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What happens when kidneys fail?

End-stage renal disease treatment:
• Kidney transplantation;
• Dialysis: blood is filtered artificially to remove waste products.

Two forms of dialysis (dialysis modalities):
• Haemodialysis (HD)

• Home HD: performed by the patient at home;
• Facility HD: performed in a hospital/dialysis centre.
• Vascular access types:

• Arterio-venous fistula or graft: AVF/AVG
• Central venous catheter: CVC

• Peritoneal dialysis (PD)
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Which modality and VA combination is best?

Aim: determine which modality and VA combination is the best
for patient survival.
Treatments of interest:

A =

{
Home HD AVF/AVG Facility HD AVF/AVG

Facility HD CVC PD

}
RCTs difficult in this context⇒ turn to observational data.

ANZDATA: Australian and New Zealand Dialysis and Transplant
Registry
• Collects data from all dialysis patients in Australia and NZ.
• Changes between PD, home HD, facility HD recorded as they

occur.
• Data (including comorbidities, vascular access) collected at

dialysis start and at yearly surveys.
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The ANZDATA dataset used for analysis

All patients commencing dialysis between October 1 2003 and
December 31 2011, undergoing at least 90 days of dialysis.
20,191 patients:
• 210,741 90-day periods of follow-up
• 6,971 deaths
• 2,966 kidney transplants
• 267 recovered kidney function

Over their treatment course, 30% of all patients had changes in
dialysis modality/VA
• Modality/VA choice thought to be affected by, and affect,

comorbidities (e.g. coronary artery disease).
• We use MSMs to estimate the effect of modality/VA on mortality.
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Unadjusted Kaplan-Meier survival curves
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Applying MSMs to ANZDATA

Problems:
1 ANZDATA is a registry, so set of measured confounders is

limited.
2 Patients are clustered within dialysis centres.

Let’s ignore these problems for the moment, and fit a pooled logistic
regression model:

logit [P(Di(t) = 1|Di(t − 1) = 0,Rx i(t),Vi)] = β0(t) + β1(t)Rxi(t) + β2Vi ,

where the observation of each patient at each period is weighted by
the stabilised inverse probability of treatment and censoring weight.
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Estimated HRs, relative to facility HD AVF/AVG
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How sensitive are estimated HRs to unmeasured
confounding?

• Following Brumback et al. (2004), develop a confounding function
for each treatment a ∈ A, c(a).

c(a) =
P(Da(t) = 1|A(t) = a,V = v)

1∑
a∗∈A\{a}

P(a∗)
∑

a∗∈A\{a}
P(a∗)P(Da(t) = 1|A(t) = a∗,V = v)

,

P(a∗) =P(A(t) = a∗|V = v).

• Informal interpretation of c(a):
HR of death comparing patients on a to those not on a, had
those patients been (contrary to the fact!) on a.

• c(a) = 1: no difference in the risk of death of patients on a and
those not on a.

• c(Facility HD CVC) > 1: Facility HD CVC patients have a greater
risk of death than those patients on PD/ Home HD/ Facility HD
AVF/AVG (had those patients been on Facility HD CVC).
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HRs accounting for unmeasured confounding
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Clustering by dialysis centre

• All patients, even those undergoing home-based treatment, have
a dialysis centre which is responsible for administering their
treatment.

• 85 dialysis centres are represented in our dataset.
• There are differences in practice and survival across centres.

• An extreme difference: not all dialysis types are
available/represented in all centres (or only occur rarely within a
centre).

• In violation of the positivity assumption...
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Clustering of treatments within the 85 centres
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Dealing with this violation of the positivity assumption:

1 Modify the set of centres:
• Include only those centres in which all treatments are possible (or

probable - occurring at least 5% of the time).

2 Modify the set of treatments within each centre:
• Limit the sets of treatments at each centre to those

possible/probable.
• To prevent unavailable treatments being assigned non-zero

probabilities, use an alternative-specific conditional logit
(McFadden’s choice) model to estimate propensity scores.

Both approaches: to account for unexplained variation between
centres, include fixed effects for centres in treatment, censoring and
survival models.
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Analyses accounting for clustering by centre Cj ,
treatments a ∈ A

Centres with only one treatment possible/probable must be excluded
from all analyses.
• Exclude 11 Cj with < 150 periods (545 periods excluded in total)
• Leaves 74 centres, 208132 periods

Included Total no.
Restriction centres of periods

1 Centres w/ P(A = a|Cj) > 0,∀a ∈ A 68 192166
2 Centres w/ P(A = a|Cj) > 0.05, ∀a ∈ A 34 127888

3 Treatments w/ P(A = a|Cj) > 0 74 208132
4 Treatments w/ P(A = a|Cj) > 0.05 70 206905

J Kasza, R Wolfe, K Polkinghorne (Monash) ISCB 2014 17 / 20



HRs accounting for clustering by centre
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Discussion

• Effect of unmeasured confounding supposed to be constant over
time:

• Possible that groups start off as quite different, but become more
similar as time spent on dialysis increases.

• Time-varying confounding should be corrected for, but choice of
appropriate time-varying confounding function is difficult.

• Clustering is not often accounted for in the application of MSMs:
• If treatment options are restricted (instead of centres): HRs defined

only for those centres in which the treatment is available.
• Accounting for clustering did not markedly change conclusions.

• Research into accounting for differential amounts of unmeasured
confounding across clusters ongoing.
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HD vascular access types

Arterio-venous fistula (AVF):

Arterio-venous graft (AVG):

Central venous catheter (CVC):
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Patients may change dialysis modality/VA

Comorbidities and BMI are time-varying confounders that are affected
by previous dialysis modality and VA:
• on the causal pathway between dialysis type and death.

C0 C1 C2 · · ·CT

Rx0 Rx1 Rx2 · · ·RxT

T

• If comorbidity history is conditioned on, effect of dialysis modality
acting through comorbidities is blocked.

• We used marginal structural models to estimate the causal effect
of dialysis modality on survival.
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Imputation of VA change times

Dates of change between PD/home HD/facility HD are recorded:
• Problem: VA change times are not recorded!

• We impute these stochastically, using a distribution estimated from
the data.

• 50 sets of VA change times imputed, and Rubin’s rules used to
combine estimates.

Table: Number of periods, deaths, transplants/regain function for each
exposure category, averaged over the 50 simulations: mean, (sd).

90-day periods Deaths Transplants/
regain function

Home HD AVF/AVG 16,073 (73) 152 (2) 474 (3)
Facility HD AVF/AVG 109,968 (68) 3,107 (9) 1,316 (5)

Facility HD CVC 21,517 (62) 1,493 (8) 321 (5)
PD 61,134 (1) 2190 (0) 1082 (0)
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How sensitive are our conclusions to unmeasured
confounding?

Modifying Brumback et al. SiM (2004):
• Dialysis type at time t denoted by A(t), taking values a ∈ A,

baseline variables V
• D(t) = 1 if death at time t
• Da(t): counterfactual outcome had this patient received dialysis

type a.
For each a ∈ A, confounding function:

c(a, v , t) =
P(Da(t) = 1|A(t) = a,V = v)

1∑
a∗∈A\{a}

P(a∗)
∑

a∗∈A\{a}
P(a∗)P(Da(t) = 1|A(t) = a∗,V = v)

P(a∗) =P(A(t) = a∗|V = v).

Informal interpretation as an odds ratio.
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Assessing the impact of unmeasured confounding

• c(a, v , t) = 1: no difference in the risk of death of patients on a
and those not on a.

• e.g. Facility HD CVC patients thought to be less healthy than other
patients on average (controlling for what is already measured)

• c(Facility HD CVC,v, t) > 1: Facility HD CVC patients have a
greater risk of death than those patients on PD/ Home HD/ Facility
HD AVF/AVG (had those patients been on Facility HD CVC).

• Can then obtain an expression for the amount of bias due to
unmeasured confouding.
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HRs accounting for unmeasured confounding
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HRs accounting for unmeasured confounding
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Positivity assumption in the presence of clustering

• Usual positivity assumption, patient i :

P(Ai(t) = ai |Āi(t),Vi)

P(Ai(t) = ai |Āi(t), L̄i(t),Vi)
<∞, ∀ai ∈ A

• Positivity assumption in the presence of clustering:
patient i in centre Cj , Aj = set of treatments available in Cj :

P(Aij(t) = aij |Āij(t),Vij ,Cj)

P(Aij(t) = aij |Āij(t), L̄ij(t),Vij ,Cj)
<∞, ∀aij ∈ Aj
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Including laboratory measurements

• Calcium (mmol/l);
• Phosphate (mmol/l);
• Haemoglobin (g/l);

• EPO agent (yes or no);
• Ferritin (ug/l);
• % saturation iron.

Lab measurements recorded at surveys:
• not at dialysis start.
• Don’t necessarily correspond to labs at treatment change times.

Idea: consider only those 4905 patients starting dialysis within 90 days
of a survey.
• Maybe these measurements are highly correlated with

measurements at dialysis start...
• No. Labs are quite variable during the initial months of analysis.

Solution:
Start observation time from the first survey occurring ≥ 90 days after
dialysis start.
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