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Estimating effect of an exposure on an outcome

• Use data to investigate the relationship between an exposure and an outcome.
e.g. What is the relationship between smoking and adult asthma?

• How can we best select the set of confounders to adjust for in our estimation of
the exposure-outcome relationship?

Simple approach:
• Ask an expert to list confounders, adjust for these in outcome regression model or

propensity score model.
A better approach:
• Get the expert to draw a causal diagram...
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Causal diagrams and DAGs

Causal diagrams display relationships using directed acyclic graphs (DAGs)

G = (V ,E)

• V = set of variables (nodes);
• E = set of directed edges between nodes (indicating direct causes);
• missing edges indicate the absence of direct causal relationships.
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A more realistic DAG: from Williamson et al. Respirology, 2014.
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Why is a DAG a better approach?

Can help to prevent bias from over- or under-adjustment; increase efficiency.
• Apply graph-theoretic rules to determine adjustment set e.g. dagitty.net.
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What if the expert got the DAG wrong?

True DAG: Gtrue = (Vtrue,Etrue) Expert DAG: Gexpert = (Vexpert,Eexpert)

• We assume the set of variables is correctly specified, but the edge set may be
misspecified.

• Vtrue = Vexpert
• If Etrue ⊆ Eexpert, Gexpert is valid for causal inference.

But how can we tell if the expert’s DAG is valid?
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Structure learning and the expert

Structure learning algorithm (unconstrained):
Input: n samples of (X1,X2, . . . ,Xp)

Output: DAG1 on (X1,X2, . . . ,Xp)

Apply structure learning algorithms to the data, compare result to the expert’s DAG2

PROBLEMS!
• These algorithms are quite unstable: small perturbations of the data may lead to very

different structures.
• As n→∞, these algorithms will find the true underlying DAG1, BUT behaviour for

realistic sample sizes can be poor...
• Large space, low statistical power to detect associations.

1Not quite true: it will actually find an equivalence class of DAGs...
2For example: Meek, Causal inference and causal explanation with background knowledge. UAI 1995

Jessica Kasza (Monash) Vetting the Expert ASC 2016 7 / 22



Structure learning and the expert

Structure learning algorithm (unconstrained):
Input: n samples of (X1,X2, . . . ,Xp)

Output: DAG1 on (X1,X2, . . . ,Xp)

Apply structure learning algorithms to the data, compare result to the expert’s DAG2

PROBLEMS!
• These algorithms are quite unstable: small perturbations of the data may lead to very

different structures.
• As n→∞, these algorithms will find the true underlying DAG1, BUT behaviour for

realistic sample sizes can be poor...
• Large space, low statistical power to detect associations.

1Not quite true: it will actually find an equivalence class of DAGs...
2For example: Meek, Causal inference and causal explanation with background knowledge. UAI 1995

Jessica Kasza (Monash) Vetting the Expert ASC 2016 7 / 22



Our proposal: vetting (Constrained structure learning)

Vetting= Validation of Expert Topology

Input: n samples of (X1,X2, . . . ,Xp) plus the expert’s DAG
Output: DAG on (X1,X2, . . . ,Xp): an extended version of the expert’s DAG

• Constrain structure learning algorithms so that edges specified by the expert are
always included.

• Only consider super-graphs of the expert’s graph: additional edges necessary?
• Super-graphs are valid for causal inference.

• Requires development of the theory of vetting equivalence classes...

How can the expert go wrong?
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The good, the bad, and the ugly: types of expert errors

True DAG:

X Y Z

1 “Essentially correct”: truth is contained in the expert’s graph

X Y Z X Y Z

2 “Weakly incorrect”: a super-graph of the expert’s graph that contains the truth

X Y Z X Y Z

3 “Strongly incorrect”: no extension of the expert’s graph contains the truth

X Y Z X Y Z
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Simulation study: Vetting the Asthma DAG

Generate binary data from the Asthma DAG: Gtrue

• 50 data sets for each sample size n = {10,50,100,250,10000}.

1 Apply vetting to an ‘expert-elicited’ DAG
2 Apply unconstrained structure learning

For each learned equivalence class of DAGs:
1 Is the returned DAG equivalence class correct?

• Calculate P(Gtrue ⊆ Glearned): super-model of true causal DAG valid for causal inference.
2 Is the estimate of the average causal effect of personal smoking on adult asthma

unbiased?
• Use inverse probability of treatment weighting to estimate the effect
• Calculate squared error of estimate.
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The true and expert DAGs
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A) True DAG
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B) Expert essentially correct (Good!)

Personal
Smoking Adult Asthma

SESParental
asthma

Parental
smoking

Chronic
bronchitis

Childhood
asthmaUnderlying

atopy
Sex

Jessica Kasza (Monash) Vetting the Expert ASC 2016 14 / 22



C) Expert weakly incorrect I (Ugly!)
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D) Expert weakly incorrect II (Ugly!)
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E) Expert strongly incorrect (Bad!)
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Simulation study results
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Real data example: Melbourne Collaborative Cohort Study

What is the total causal effect of waist circumference on mortality?

• Random subset of 9000 male participants from MCCS
• Apply vetting to the expert’s DAG, using a randomly selected sub-subset of size

n = 1000.
• Use n = 9000 data to estimate total causal effect of waist circumference on mortality

using IPTW, adjusting for variables as indicated by the {expert, vetted} DAG.
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Estimating the effect of waist circumference ≥ 102cm on death

Expert DAG
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Adjustment Odds Ratio (95% CI)
No adjustment 2.08 (1.79, 2.43)

Expert DAG 1.53 (1.31, 1.80)
Vetted DAG 1.51 (1.29, 1.78)
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Vetting: take-home messages

Causal diagrams, using the language of DAGs, are a useful tool for adjustment set
selection.
• Expert opinion is invaluable in the construction of a DAG. But...

• DAG construction is difficult!
• Erroneous DAGs can lead to invalid inference.

Vetting: augmentation of the expert’s DAG using structure learning.

• Assumptions: all necessary variables measured and included and a supergraph of
the expert’s DAG contains the true DAG.

• Automated procedures balanced with expert knowledge.
• Robustness against certain types of expert errors.
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Markov & Vetting equivalence classes of DAGs

Not all DAGs encode different sets of conditional independence relationships...
For example,

{X → Y → Z ,X ← Y ← Z ,X ← Y → Z}

all encode that X and Z are conditionally independent given Y .
• This set of DAGs forms a Markov equivalence class of DAGs

However, if the expert specifies an edge X → Y , then

{X → Y → Z} and {X ← Y ← Z ,X ← Y → Z}

form separate vetting equivalence classes.
• Can distinguish between Markov equivalent DAGs using expert information!
• Vetting equivalence is a finer notion than Markov equivalence.
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Learning graphical structure: the PC algorithm

Input: Data n samples of (X1,X2, . . . ,Xp)

Output: DAG on (X1,X2, . . . ,Xp)

PC algorithm:
Stage 1: Start with a complete undirected graph on (X1,X2, . . . ,Xp)

• Test for conditional independence: remove edges
Stage 2: Direct edges of the undirected graph using information about conditional

independence.
Vetting version of the PC algorithm:

Stage 1: Start with a complete undirected graph on (X1,X2, . . . ,Xp)

• Test for conditional independence: remove edges, but only consider
removal of edges NOT in expert’s DAG.

Stage 2: Direct edges of the undirected graph using the expert’s DAG and information
about conditional independence.
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MCCS example: Unconstrained structure learning
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