Causal diagrams, expert opinion and structure learning: vetting the expert

CJ Oates^{*1}, **J Kasza**^{*2,3}, JA Simpson^{3,4}, AB Forbes^{2,3} * Equal joint first authors

jessica.kasza@monash.edu

University of Technology Sydney
Monash University
Victorian Centre for Biostatistics (ViCBiostat)
University of Melbourne

Jessica Kasza (Monash)

Vetting the Expert

• Use data to investigate the relationship between an exposure and an outcome.

e.g. What is the relationship between smoking and adult asthma?

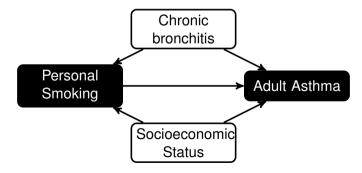
- How can we **best select the set of confounders** to adjust for in our estimation of the exposure-outcome relationship?
- Simple approach:
 - Ask an expert to list confounders, adjust for these in outcome regression model or propensity score model.
- A better approach:
 - Get the expert to draw a causal diagram...

Causal diagrams and DAGs

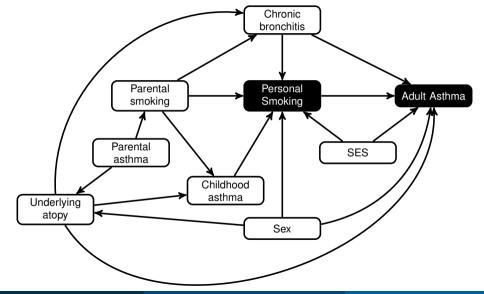
Causal diagrams display relationships using directed acyclic graphs (DAGs)

 $\mathcal{G}=(V,E)$

- *V* = set of variables (nodes);
- *E* = set of directed edges between nodes (indicating direct causes);
- missing edges indicate the absence of direct causal relationships.



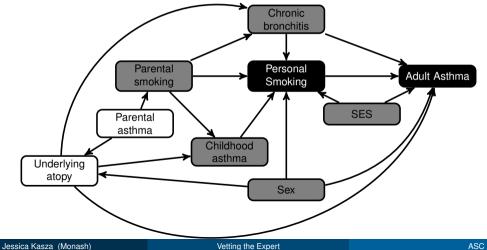
A more realistic DAG: from Williamson et al. Respirology, 2014.



Why is a DAG a better approach?

Can help to prevent bias from over- or under-adjustment; increase efficiency.

• Apply graph-theoretic rules to determine adjustment set e.g. dagitty.net.



True DAG: $\mathcal{G}_{true} = (V_{true}, E_{true})$ **Expert DAG:** $\mathcal{G}_{expert} = (V_{expert}, E_{expert})$

- We assume the set of variables is correctly specified, but the edge set may be misspecified.
 - $V_{\text{true}} = V_{\text{expert}}$
 - If $E_{true} \subseteq E_{expert}$, \mathcal{G}_{expert} is valid for causal inference.

But how can we tell if the expert's DAG is valid?

Structure learning algorithm (unconstrained):

Input: *n* samples of $(X_1, X_2, ..., X_p)$ Output: DAG¹ on $(X_1, X_2, ..., X_p)$

Apply structure learning algorithms to the data, compare result to the expert's DAG²

¹Not quite true: it will actually find an **equivalence class** of DAGs...

²For example: Meek, *Causal inference and causal explanation with background knowledge*. UAI 1995

Structure learning algorithm (unconstrained):

Input: *n* samples of $(X_1, X_2, ..., X_p)$ Output: DAG¹ on $(X_1, X_2, ..., X_p)$

Apply structure learning algorithms to the data, compare result to the expert's DAG²

PROBLEMS!

- These algorithms are quite unstable: small perturbations of the data may lead to very different structures.
- As n→∞, these algorithms will find the true underlying DAG¹, BUT behaviour for realistic sample sizes can be poor...
 - Large space, low statistical power to detect associations.

¹Not quite true: it will actually find an **equivalence class** of DAGs...

²For example: Meek, *Causal inference and causal explanation with background knowledge*. UAI 1995

Vetting= Validation of Expert Topology

Input: *n* samples of $(X_1, X_2, ..., X_p)$ plus the expert's DAG Output: DAG on $(X_1, X_2, ..., X_p)$: an extended version of the expert's DAG

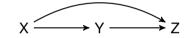
- Constrain structure learning algorithms so that edges specified by the expert are always included.
 - Only consider super-graphs of the expert's graph: additional edges necessary?
 - Super-graphs are valid for causal inference.
- Requires development of the theory of vetting equivalence classes...

How can the expert go wrong?

True DAG:

True DAG:

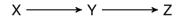
1 "Essentially correct": truth is contained in the expert's graph

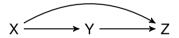


True DAG:

1 "Essentially correct": truth is contained in the expert's graph

7



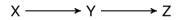


2 "Weakly incorrect": a super-graph of the expert's graph that contains the truth

 $X \longrightarrow V$

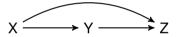
True DAG:

1 "Essentially correct": truth is contained in the expert's graph



 $X \longrightarrow Y \qquad 7$

 $X \longleftarrow Y \longrightarrow 7$



2 "Weakly incorrect": a super-graph of the expert's graph that contains the truth

3 "Strongly incorrect": no extension of the expert's graph contains the truth

True DAG:

Essentially correct: truth is contained in the expert's graph $X \longrightarrow Y \longrightarrow 7$ 2 "Weakly incorrect": a super-graph of the expert's graph that contains the truth 7 $X \longrightarrow V$ 3 "Strongly incorrect": no extension of the expert's graph contains the truth

Simulation study: Vetting the Asthma DAG

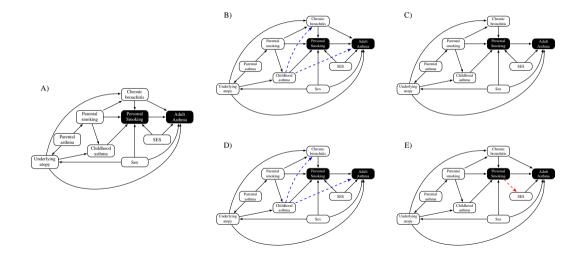
Generate binary data from the Asthma DAG: G_{true}

- 50 data sets for each sample size $n = \{10, 50, 100, 250, 10000\}$.
- 1 Apply vetting to an 'expert-elicited' DAG
- 2 Apply unconstrained structure learning

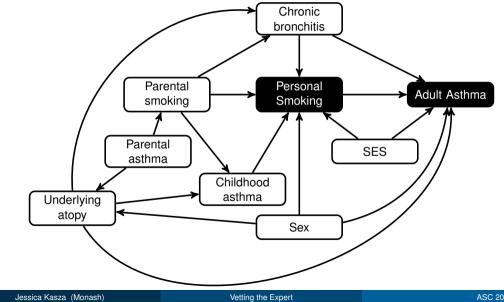
For each learned equivalence class of DAGs:

- 1 Is the returned DAG equivalence class *correct*?
 - Calculate $P(\mathcal{G}_{true} \subseteq \mathcal{G}_{learned})$: super-model of true causal DAG valid for causal inference.
- Is the estimate of the average causal effect of personal smoking on adult asthma unbiased?
 - Use inverse probability of treatment weighting to estimate the effect
 - Calculate squared error of estimate.

The true and expert DAGs

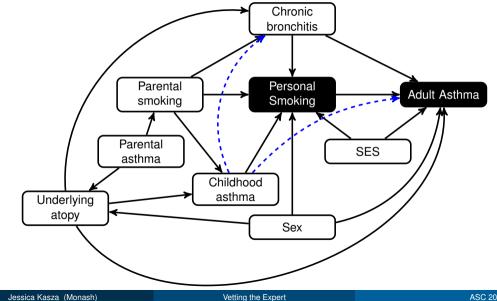


A) True DAG



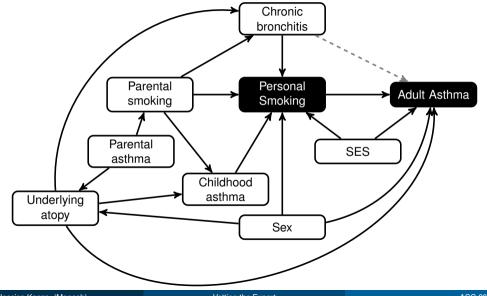
ASC 2016 13 / 22

B) Expert essentially correct (Good!)

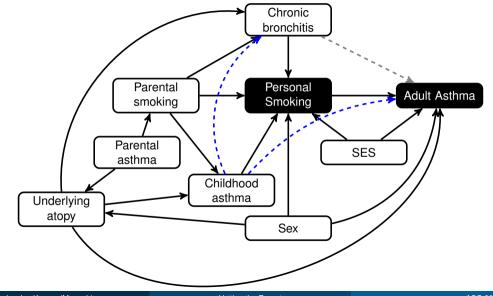


ASC 2016 14 / 22

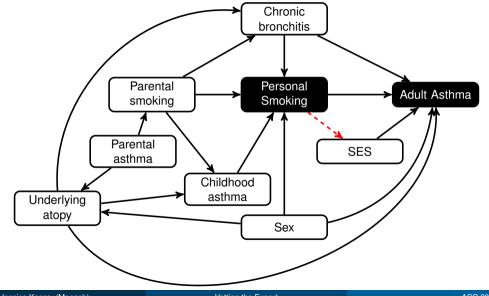
C) Expert weakly incorrect I (Ugly!)



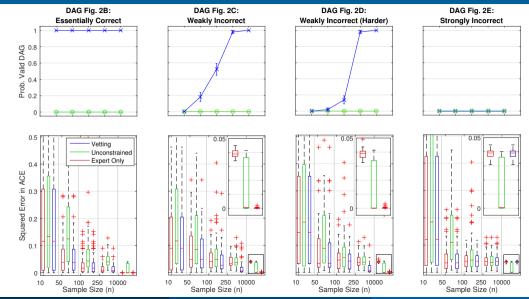
D) Expert weakly incorrect II (Ugly!)



E) Expert strongly incorrect (Bad!)



Simulation study results



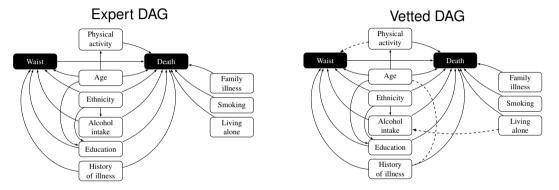
Jessica Kasza (Monash)

Vetting the Expert

What is the total causal effect of waist circumference on mortality?

- Random subset of 9000 male participants from MCCS
- Apply vetting to the expert's DAG, using a randomly selected sub-subset of size n = 1000.
- Use *n* = 9000 data to estimate total causal effect of waist circumference on mortality using IPTW, adjusting for variables as indicated by the {expert, vetted} DAG.

Estimating the effect of waist circumference \geq 102cm on death



Adjustment	Odds Ratio (95% CI)
No adjustment	2.08 (1.79, 2.43)
Expert DAG	1.53 (1.31, 1.80)
Vetted DAG	1.51 (1.29, 1.78)

Jessica Kasza (Monash)

Vetting the Expert

Causal diagrams, using the language of DAGs, are a useful tool for adjustment set selection.

- Expert opinion is invaluable in the construction of a DAG. But...
 - DAG construction is difficult!
 - Erroneous DAGs can lead to invalid inference.

Vetting: augmentation of the expert's DAG using structure learning.

- Assumptions: all necessary variables measured and included and a supergraph of the expert's DAG contains the true DAG.
- Automated procedures balanced with expert knowledge.
- Robustness against certain types of expert errors.

- Meek C, Causal inference and causal explanation with background knowledge. UAI 1995.
- Oates CJ, Kasza J, Simpson JA, Forbes A. Repair of partly misspecified causal diagrams. *Epidemiology*. Accepted: to appear 2017.
- Shrier I, Platt RW. Reducing bias through directed acyclic graphs. *BMC Medical Research Methodology*. 2008;8:70.
- Williamson EJ, Aitken Z, Lawrie J, et al. Introduction to causal diagrams for confounder selection. *Respirology* 2014;19(3):303-11.

SAVE THE DATE Joint International Society for Clinical Biostatistics and Australian Statistical Conference 26-30 August 2018

Jessica Kasza (Monash)

Vetting the Expert

Markov & Vetting equivalence classes of DAGs

Not all DAGs encode different sets of conditional independence relationships... For example,

$$\{X o Y o Z, X \leftarrow Y \leftarrow Z, X \leftarrow Y o Z\}$$

all encode that X and Z are conditionally independent given Y.

• This set of DAGs forms a Markov equivalence class of DAGs

However, if the expert specifies an edge $X \rightarrow Y$, then

$$\{X \to Y \to Z\}$$
 and $\{X \leftarrow Y \leftarrow Z, X \leftarrow Y \to Z\}$

form separate vetting equivalence classes.

- Can distinguish between Markov equivalent DAGs using expert information!
- Vetting equivalence is a finer notion than Markov equivalence.

Learning graphical structure: the PC algorithm

Input: Data *n* samples of $(X_1, X_2, ..., X_p)$ Output: DAG on $(X_1, X_2, ..., X_p)$

PC algorithm:

Stage 1: Start with a complete undirected graph on (X_1, X_2, \ldots, X_p)

- Test for conditional independence: remove edges
- Stage 2: Direct edges of the undirected graph using information about conditional independence.

Vetting version of the PC algorithm:

Stage 1: Start with a complete undirected graph on (X_1, X_2, \ldots, X_p)

• Test for conditional independence: remove edges, but only consider removal of edges NOT in expert's DAG.

Stage 2: Direct edges of the undirected graph using the expert's DAG and information about conditional independence.

MCCS example: Unconstrained structure learning

