Assessing the impact of unmeasured confounding: confounding functions for causal inference

Jessica Kasza

jessica.kasza@monash.edu

Department of Epidemiology and Preventive Medicine, Monash University Victorian Centre for Biostatistics (ViCBiostat)

Biometrics by the Harbour 2015

- 1 What is causal inference?
- 2 How can the impact of unmeasured confounding be assessed?
- 3 An example: abciximab and death in percutaneous coronary intervention patients.

There are many situations in which randomised trials cannot be conducted:

- Often difficult or unethical to randomise patients to treatments.
- But there may exist observational data containing treatments/exposures and outcomes of interest!

Causal inference permits causal interpretations of associations.

- Strict assumptions required:
 - The one I care about here is no unmeasured confounding.
 - Assume the others are satisfied...
- Use the potential outcomes framework...

Potential outcomes: abciximab and death

Each patient has two potential outcomes:

Potential outcomes: abciximab and death

Each patient has two potential outcomes:

Of which only one is observed:

Potential outcomes and the causal odds ratio

- A = 0 if patient did not receive treatment; A = 1 if received treatment.
 - Causal odds ratio:

$$OR^{c} = \frac{P(Y^{1} = 1)}{1 - P(Y^{1} = 1)} / \frac{P(Y^{0} = 1)}{1 - P(Y^{0} = 1)}$$

Potential outcomes and the causal odds ratio

- A = 0 if patient did not receive treatment; A = 1 if received treatment.
 - Causal odds ratio:

$$OR^{c} = \frac{P(Y^{1} = 1)}{1 - P(Y^{1} = 1)} / \frac{P(Y^{0} = 1)}{1 - P(Y^{0} = 1)}$$

• Conditional odds ratio:

$$OR = \frac{P(Y=1|A=1)}{1-P(Y=1|A=1)} \bigg/ \frac{P(Y=1|A=0)}{1-P(Y=1|A=0)}$$

Potential outcomes and the causal odds ratio

- A = 0 if patient did not receive treatment; A = 1 if received treatment.
 - Causal odds ratio:

$$OR^{c} = \frac{P(Y^{1} = 1)}{1 - P(Y^{1} = 1)} / \frac{P(Y^{0} = 1)}{1 - P(Y^{0} = 1)}$$

Conditional odds ratio:

$$OR = \frac{P(Y=1|A=1)}{1-P(Y=1|A=1)} \bigg/ \frac{P(Y=1|A=0)}{1-P(Y=1|A=0)}$$

If causal inference assumptions are satisfied, $OR^c = OR$.

- If data are observational, likely to be differences between treatment groups.
 - Measured confounders:
 - e.g. treated subjects tend to be older & older patients more likely to experience the outcome.
 - Unmeasured confounders:
 - e.g. cognitive function; social connectedness; some measure of overall health.
- Adjusting for measured confounders:
 - Assume an inverse probability of treatment weighting approach used to estimate a marginal odds ratio.
 - Skip the details!

- If data are observational, likely to be differences between treatment groups.
 - Measured confounders:
 - e.g. treated subjects tend to be older & older patients more likely to experience the outcome.
 - Unmeasured confounders:
 - e.g. cognitive function; social connectedness; some measure of overall health.
- Adjusting for measured confounders:
 - Assume an inverse probability of treatment weighting approach used to estimate a marginal odds ratio.
 - Skip the details!

How can we adjust for the unmeasured differences that we suspect are present?

- **Instrumental variables**: a variable related to treatment and only related to outcome through treatment.
 - Able to adjust for the entire impact of unmeasured confounding.
 - Problem: IVs may not be available if there is a limited set of recorded variables.
- External adjustment: assume the existence of one or more unmeasured (binary) confounders.
 - Useful if you have good expert knowledge on particular unmeasured confounders.
 - Problems:
 - difficult to assess the entire impact of unmeasured confounding;
 - assumptions may be as untenable as original assumption of no unmeasured confounding.

Adjust estimates using a confounding function that describes the degree of unmeasured confounding

$$c(a) = rac{P(Y^a = 1 | A = 1)}{P(Y^a = 1 | A = 0)}, \quad a = 0, 1$$

¹Following Brumback et al (Stat Med 2004), Robins (Synthese 1999)

Adjust estimates using a confounding function that describes the degree of unmeasured confounding

$$c(0) = \frac{P(Y^0 = 1 | A = 1)}{P(Y^0 = 1 | A = 0)}, \quad c(1) = \frac{P(Y^1 = 1 | A = 1)}{P(Y^1 = 1 | A = 0)}$$

¹Following Brumback et al (Stat Med 2004), Robins (Synthese 1999)

Adjust estimates using a confounding function that describes the degree of unmeasured confounding

$$c(0) = \frac{P(Y^0 = 1 | A = 1)}{P(Y^0 = 1 | A = 0)}, \quad c(1) = \frac{P(Y^1 = 1 | A = 1)}{P(Y^1 = 1 | A = 0)}$$

- *c*(0), *c*(1) are a counterfactual quantities: values selected by investigators.
- Requires contextual knowledge to quantify the impact of unmeasured confounding, in terms of counterfactual outcomes.

What differences in the outcomes are due to unaccounted-for differences in the treatment groups, rather than due to the effect of treatment on the outcome?

¹Following Brumback et al (Stat Med 2004), Robins (Synthese 1999)

Confounding function approach

 $A = 0 \Rightarrow$ no treatment, $A = 1 \Rightarrow$ received treatment:

$$c(0) = rac{P(Y^0 = 1 | A = 1)}{P(Y^0 = 1 | A = 0)}, \quad c(1) = rac{P(Y^1 = 1 | A = 1)}{P(Y^1 = 1 | A = 0)}$$

Confounding function approach

 $A = 0 \Rightarrow$ no treatment, $A = 1 \Rightarrow$ received treatment:

$$c(0) = rac{P(Y^0 = 1 | A = 1)}{P(Y^0 = 1 | A = 0)}, \quad c(1) = rac{P(Y^1 = 1 | A = 1)}{P(Y^1 = 1 | A = 0)}$$

 $\textit{c}(0) = \textit{c}(1) = 1 \Rightarrow$

• No unmeasured confounding is present.

Confounding function approach

 $A = 0 \Rightarrow$ no treatment, $A = 1 \Rightarrow$ received treatment:

$$c(0) = rac{P(Y^0 = 1 | A = 1)}{P(Y^0 = 1 | A = 0)}, \quad c(1) = rac{P(Y^1 = 1 | A = 1)}{P(Y^1 = 1 | A = 0)}$$

 $\textit{c}(0) = \textit{c}(1) = 1 \Rightarrow$

• No unmeasured confounding is present.

$$c(0) > 1, c(1) > 1, c(0) = c(1) \Rightarrow$$

- Risk of (both) potential outcomes higher among those actually treated.
- Some of the observed risk of the outcome for treated subjects is due to some unmeasured 'ill health';
- Effect of treatment the same in treated and untreated groups.

Adjusting for unmeasured confounding

$$OR^{c} = \frac{P(Y^{1} = 1)}{1 - P(Y^{1} = 1)} / \frac{P(Y^{0} = 1)}{1 - P(Y^{0} = 1)}$$

$$c(a) = \frac{P(Y^a = 1 | A = 1)}{P(Y^a = 1 | A = 0)}, \quad h(a) = P(A = 0) + c(a)P(A = 1)$$

The causal odds ratio can be written as:

$$OR^{c} = \frac{h(1)P(Y=1|A=1)/c(1)}{1-h(1)P(Y=1|A=1)/c(1)} \Big/ \frac{h(0)P(Y=1|A=0)}{1-h(0)P(Y=1|A=0)}$$

- Consider sensitivity of *OR* to range of values of c(1) and c(0).
 - Beware implicit assumptions if $c(1) \neq c(0)$: differential treatment effect in treated and untreated.

Application: Abciximab and death²

- Administration of abciximab at discretion of interventionist.
- Adjust for sex, height, diabetes, recent MI, left ventricle ejection fraction, number of vessels in PCI, insertion of coronary stent using inverse probability of treatment weighting.

Jessica Kasza (Monash)

²Data from twang R package, originally analysed in Kereiakes et al, Am Heart J (2000)

Application: Abciximab and death²

- Administration of abciximab at discretion of interventionist.
- Adjust for sex, height, diabetes, recent MI, left ventricle ejection fraction, number of vessels in PCI, insertion of coronary stent using inverse probability of treatment weighting.

²Data from twang R package, originally analysed in Kereiakes et al, Am Heart J (2000)

Application: Abciximab and death

$$c(\text{Abciximab}) = \frac{P(Y^{\text{Abc}} = 1|\text{Abc})}{P(Y^{\text{Abc}} = 1|\text{No Abc})}$$
$$c(\text{No Abciximab}) = \frac{P(Y^{\text{No Abc}} = 1|\text{Abc})}{P(Y^{\text{No Abc}} = 1|\text{No Abc})}$$

If both > 1, then

$$P(Y^{Abc} = 1|Abc) > P(Y^{Abc} = 1|No Abc)$$

 $P(Y^{No Abc} = 1|Abc) > P(Y^{No Abc} = 1|No Abc)$

 Had they not received Abciximab, those who actually received Abciximab more likely to die than those who did not receive Abciximab.

Sensitivity analysis for the OR

Sensitivity analysis for the OR, c(0) = c(1) = 1

Jessica Kasza (Monash)

- Causal inference is useful in situations when randomised trials can't be conducted
 - Strict assumptions, including no unmeasured confounding.
 - Problem: in most applications, the assumption of unmeasured confounders will not be satisfied!
- Turn to alternative approaches:
 - Instrumental variables; external adjustment; confounding functions.
- I've described the confounding function approach for binary outcomes.
 - Approach also available for continuous outcomes.
 - Provides a way to assess the sensitivity of estimates to the entire effect of unmeasured confounding.
 - Easy to apply.
 - Contact me for Stata code!

- VanderWeele TJ, Arah OA. (2011) Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders. *Epidemiology*, 22:42-52.
- Robins JM. (1999) Association, causation and marginal structural models. *Synthese*, 121:151-79.
- Brumback BA, Hernan MA, Haneuse SJPA, et al. (2004) Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. *Statistics in Medicine*, 23:749-767.

Propensity scores

Propensity score for subject *i*, with observed covariates X_i = x_i, treatment A_i = a_i:

$$PS_i = P(A_i = 1 | X_i = x_i)$$

Usually estimated using logistic regression models.

- Rosenbaum & Rubin (Biometrika, 1983): adjustment for *PS* sufficient to remove bias due to all *X*.
- Inverse probability of treatment weighting: Each subject's observation assigned a weight:

$$w_i = \frac{a_i}{PS_i} + \frac{1-a_i}{1-PS_i}$$

Each subject's observation weighted by 1/w_i.