Information content of cluster-period cells in stepped wedge designs with unequal cell sizes

Jessica Kasza: jessica.kasza@monash.edu

Rhys Bowden: rhys.bowden@monash.edu

Andrew Forbes: andrew.forbes@monash.edu

International Society for Clinical Biostatistics Conference 2020

The standard cluster randomised trial

Clusters assigned to Control

Clusters assigned to Intervention

- Clusters (groups) of participants assigned to treatments. (Why?)
- Clusters could be hospitals, intensive care units, schools, neighbourhoods...
 - Clustering inflates required sample size over that required for an individually-randomised trial.

The standard cluster randomised trial

- Clusters (groups) of participants assigned to treatments. (Why?)
- Clusters could be hospitals, intensive care units, schools, neighbourhoods...
 - Clustering inflates required sample size over that required for an individually-randomised trial.

Can reduce required sample size by considering *longitudinal (multiple period)* cluster randomised trials.

The stepped wedge cluster randomised trial design

- Stepped wedge designs can be useful when all clusters need to receive the intervention, or the intervention is going to be rolled out anyway.
- Different numbers of clusters may be assigned to each sequence;
- Might be different numbers of participants in each cluster in each period.

Each cluster-period pair is a **cell** of the design.

Does each *cell* contribute the same amount of information?

- Which participants contribute the most information about the treatment effect?
- Do we really need to include all cluster-period cells? (What about incomplete designs?)

Does each *cell* contribute the same amount of information?

- Which participants contribute the most information about the treatment effect?
- Do we really need to include all cluster-period cells? (What about incomplete designs?)

Need a model for the outcomes to answer this question!

A model for continuous outcomes:

- Treatment effect is of most interest: θ
 - $\hat{\theta}$ is the weighted least squares estimator of θ .
 - $var(\hat{\theta})$ is the variance of this estimator: key ingredient in sample size calculations.

Need a model for the outcomes to answer this question!

A model for continuous outcomes:

- Treatment effect is of most interest: θ
 - $\hat{\theta}$ is the weighted least squares estimator of θ .
 - $var(\hat{\theta})$ is the variance of this estimator: key ingredient in sample size calculations.

How much does $var(\hat{\theta})$ increase if observations from a given cell are omitted?

Calculate $var(\hat{\theta})$ given the complete design:

Calculate $var(\hat{\theta})$ given the complete design:

```
Control Intervention Intervention Intervention

Control Control Intervention Intervention

Control Control Intervention Intervention

Control Control Intervention
```

Calculate $var(\hat{\theta})_{[kt]}$ from the incomplete design, omitting period t of cluster k:

```
Control Intervention Intervention Intervention
Control Control Intervention Intervention
Control Control Intervention
```

Calculate $var(\hat{\theta})$ given the complete design:

Calculate $var(\hat{\theta})_{[kt]}$ from the incomplete design, omitting period t of cluster k:

Information content of cell (k, t): $IC(k, t) = var(\hat{\theta})_{[kt]}/var(\hat{\theta})$

Calculate $var(\hat{\theta})$ given the complete design:

Calculate $var(\hat{\theta})_{[kt]}$ from the incomplete design, omitting period t of cluster k:

```
Control Intervention Intervention Intervention
Control Control Intervention Intervention
Control Control Intervention
```

Information content of cell (k, t): $IC(k, t) = var(\hat{\theta})_{[kt]}/var(\hat{\theta})$

IC(k, t) = 1 implies no information loss; IC(k, t) > 1 implies loss of information.

Information content of cells

- Previously explored the information content of stepped wedge cells when:
 - There are the same number of participants in each cluster in each period¹
 - There are the same number of participants in each cluster in each period and there is treatment effect heterogeneity or implementation periods in the design²
- Most information in the cluster-period cells near the time of the treatment switch (and in "hotspots")

¹Kasza & Forbes, Biometrics, 2018

²Kasza, Taljaard, Forbes. Statistics in Medicine, 2019

Design matrix: equal numbers of participants in each cell

Design matrix: equal numbers of participants in each cell

Information content: equal numbers of participants in each cell (ICC = 0.05, m = 100)

Information content: equal numbers of participants in each cell $(\rho = 0.05, m = 100)$

What happens when the number of participants in each cluster in each period varies?

Rehabilitation unit example:³

- Assess the impact of individual education in addition to usual care on fall rates in 8 hospital rehabilitation units
- 5-period stepped wedge design:

³Hill et al. The Lancet, 2015.

Differing numbers of patients in each cluster-period

The trial did not contain equal numbers of patients in each hospital in each period!

	1	2	3	4	5
Cluster 1	66	52	112	119	117
Cluster 2	36	37	42	45	33
Cluster 3	42	50	65	73	67
Cluster 4	71	65	73	80	68
Cluster 5	97	103	121	138	124
Cluster 6	81	88	82	58	73
Cluster 7	128	184	189	161	159
Cluster 8	84	88	149	98	88

Information content of cluster-period cells in the rehab unit trial

- Calculate $var(\hat{\theta})$ for each allocation of the 8 clusters to the 4 sequences (with 2 clusters per sequence)
 - 2520 possible allocations of clusters to sequences.

Total sample sizes of the incomplete Hill trials

The importance of "hot-spots" in the Hill et al. trial

What have we learned about the stepped wedge design?

- Periods near the treatment cross-over tend to be most valuable...
 - But the "hot corners" can add a lot of information (necessary to account for time effects)
- A cleverly constructed design with fewer observations can be more powerful than a design with more observations.
 - Logistical vs. statistical value of cells?

Future work: development of "optimal" incomplete designs.

You can explore the information content of cells in your own cluster randomised trial at:

https://monash-biostat.shinyapps.io/ICvaryingclustersize/